SESSION 2013 TSIM206

EPREUVE SPECIFIQUE - FILIERE TSI

MATHEMATIQUES 2

Durée : 3 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées

Les deux parties A et B de ce problème peuvent être traitées de façon indépendante.

Partie A : un arc de cercle apparent

On se place dans un plan euclidien orienté muni d'un repère orthonormé direct $(O, \vec{\imath}, \vec{\jmath})$.

Soit \mathcal{C} le cercle de centre O et de rayon 1 et le point A(a,0) où $a \in]1,+\infty[$.

On cherche l'ensemble des points du cercle \mathcal{C} visibles du point A.

Définition: on dit qu'un point M(x, y) du cercle C est **visible** du point A lorsque pour tout M'(x', y'), point d'intersection du cercle et de la droite (AM), on $a: x' \leq x$.

Sur la figure 1, l'ensemble des points du cercle visibles du point A est en trait plein tandis que la partie non-visible du cercle est en pointillé. Les deux points distincts M_1 et M_2 d'abscisses respectives x_1 et x_2 sont sur le cercle C. Les points M_1 , M_2 et A sont alignés. Le point M_1 est visible du point A car il n'y a pas d'autre point du cercle sur le segment $[AM_1]$ alors que le point M_2 ne l'est pas car le point M_1 est sur le segment $[AM_2]$, ce qui se vérifie par la condition : $x_2 < x_1 < a$.

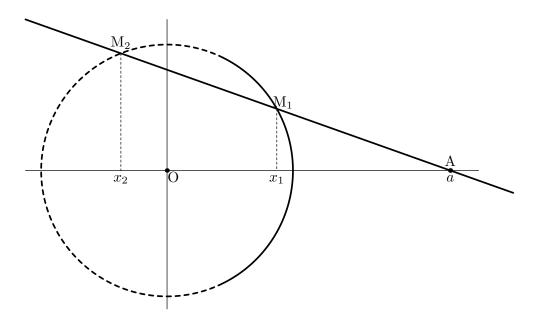


figure 1: une illustration graphique

Pour $\theta \in \mathbf{R}$, on note $M(\theta)$ le point de coordonnées $(\cos(\theta), \sin(\theta))$.

De plus, on pose : $\omega = \operatorname{Arc} \cos \left(\frac{1}{a}\right)$.

- **1.** Soit $\theta \in \mathbf{R}$. Justifier que le point $M(\theta)$ est sur le cercle \mathcal{C} .
- **2.** (a) Justifier l'existence de ω et que : $\omega \in]0, \frac{\pi}{2}[$.
 - (b) Donner les coordonnées des vecteurs $\overrightarrow{\mathrm{OM}\left(\omega\right)}$ et $\overrightarrow{\mathrm{AM}\left(\omega\right)}$, en fonction des réels a et ω .
 - (c) Exprimer a en fonction de ω .
 - (d) Établir que la droite (AM (ω)) est tangente au cercle \mathcal{C} . On pourra utiliser un produit scalaire.

On considère la fonction f définie par : $f(x) = \frac{\sin(x)}{\cos(x) - a}$.

- **3.** (a) Montrer que cette fonction est bien définie sur \mathbf{R} et est de classe \mathcal{C}^1 .
 - (b) Étudier la parité de la fonction f.
 - (c) Soit $x \in \mathbf{R}$. Donner une expression de f'(x) en fonction de a et de $\cos(x)$.
 - (d) En déduire que f est strictement décroissante sur l'intervalle $[0,\omega]$ et est strictement croissante sur l'intervalle $[\omega,\pi]$.
 - (e) Donner le tableau des variations de la fonction f sur $[-\pi,\pi]$. On **ne** cherchera **pas** à calculer $f(\omega)$.
- **4.** Soit \mathcal{D} une droite passant par A coupant le cercle \mathcal{C} en au moins un point. Montrer que \mathcal{D} admet une équation de la forme : y = m(x - a) où $m \in \mathbf{R}$.

Pour $m \in \mathbf{R}$, on note \mathcal{D}_m , la droite d'équation : y = m(x - a).

- **5.** Soit m et θ deux réels. Montrer que : $M(\theta) \in \mathcal{D}_m$ si et seulement si $m = f(\theta)$.
- **6.** Montrer que les points M(0) et $M(\pi)$ sont sur la droite \mathcal{D}_0 , puis après avoir comparé leurs abscisses, que le point M(0) est visible du point A alors que le point $M(\pi)$ ne l'est pas.

On rappelle qu'un cercle et une droite se coupent en au plus deux points.

- 7. Soit deux réels θ_1 et θ_2 tels que : $0 \le \theta_1 < \theta_2 \le \pi$ et $f(\theta_1) = f(\theta_2)$.
 - (a) Montrer que les points A, $M(\theta_1)$ et $M(\theta_2)$ sont alignés.
 - (b) Prouver que le point $M(\theta_1)$ est visible du point A alors que le point $M(\theta_2)$ ne l'est pas.
 - (c) Justifier brièvement que : $\theta_1 < \omega < \theta_2$.
- **8.** Soit $\theta \in [0, \pi]$. Établir que :
 - (a) si $\theta \leqslant \omega$, alors le point $M(\theta)$ est visible du point A.
 - (b) si $\omega < \theta$, alors le point $M(\theta)$ n'est pas visible du point A.
- **9.** Sans justification, donner des résultats analogues à la question précédente pour $\theta \in [-\pi, 0]$.

Partie B: un contour apparent d'une quadrique

On se place dans un espace euclidien orienté muni d'un repère orthonormé direct $\mathcal{R}=(O,\vec{\imath},\vec{\jmath},\vec{k})$. Soit la surface Σ d'équation : $3x^2+y^2-yz+z^2=1$.

On considère les matrices
$$S = \begin{pmatrix} 1 & -1/2 \\ -1/2 & 1 \end{pmatrix}$$
 et $R = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & -1/2 \\ 0 & -1/2 & 1 \end{pmatrix}$.

- 1. Donner les valeurs propres de la matrice S. On détaillera les calculs.
- 2. (a) Justifier, sans calcul, que l'on peut trouver une matrice diagonale D ∈ M₃(R) et une matrice orthogonale Ω ∈ M₃(R) telles que D = ^tΩRΩ où ^tΩ désigne la transposée de la matrice Ω.
 - (b) Donner une matrice diagonale D et une matrice orthogonale Ω telles que : $D = {}^t\Omega R\Omega$. On pourra utiliser la calculatrice mais on explicitera la méthode utilisée.
- **3.** En déduire la nature de la quadrique Σ .

On considère le plan \mathcal{P} d'équation : $x=\frac{1}{3}$ et la courbe $\mathcal{E}=\mathcal{P}\cap\Sigma$, intersection du plan \mathcal{P} et de la surface Σ .

- **4.** (a) Soit $M(x, y, z)_{\mathcal{R}}$ un point de l'espace. Montrer que : $M \in \mathcal{E} \iff \begin{cases} x = \frac{1}{3} \\ y^2 yz + z^2 = \frac{2}{3}. \end{cases}$
 - (b) Justifier que la courbe \mathcal{E} est une conique et que dans un repère orthonormé du plan \mathcal{P} noté $\left(O',\overrightarrow{J},\overrightarrow{K}\right)$, elle admet comme équation : $\frac{3Y^2}{4}+\frac{9Z^2}{4}=1$.

On pourra utiliser la question 1 de la partie \overrightarrow{B} . On \overrightarrow{ne} cherchera \overrightarrow{pas} à déterminer le point O' et les vecteurs \overrightarrow{J} et \overrightarrow{K} .

(c) Préciser la nature de la conique \mathcal{E} et les coordonnées de ses sommets dans le repère $\left(O',\overrightarrow{J},\overrightarrow{K}\right)$ et représenter cette conique dans le plan \mathcal{P} muni de ce repère.

On considère les points $A(1,0,0)_{\mathcal{R}}$ et $N(0,0,1)_{\mathcal{R}}$.

Définition: on dit qu'un point $M(x, y, z)_{\mathcal{R}}$ de la surface Σ est **visible** du point A lorsque que pour tout $M'(x', y', z')_{\mathcal{R}}$, point d'intersection de la surface Σ et de la droite (AM), on a : $x' \leq x$.

- **5.** (a) Justifier que le point N est sur la surface Σ .
 - (b) Donner un système d'équations paramétriques de la droite (NA). On pourra utiliser le point N et le vecteur \overrightarrow{NA} pour le paramétrage de cette droite.
 - (c) Donner les coordonnées des points d'intersection de la droite (NA) et de la surface Σ et en déduire que le point N n'est pas visible du point A.

On admet que la partie visible du point A de la surface Σ est délimitée par une courbe constituée des points M tels que la droite (AM) soit tangente à la surface Σ en M. Cette courbe est le contour apparent conique de la surface Σ issu du point A.

On note alors Γ l'ensemble des points M de la surface Σ tels que A appartienne au plan tangent à la surface Σ en M.

On considère la fonction φ définie sur \mathbb{R}^3 par : $\varphi(u, v, w) = 3u^2 + v^2 - vw + w^2 - 1$.

- **6.** Soit $(u, v, w) \in \mathbf{R}^3$. Calculer $\overrightarrow{\operatorname{grad}} \varphi(u, v, w)$.
- 7. On considère le point $B\left(\frac{1}{3}, \frac{\sqrt{2}}{3}, \frac{-\sqrt{2}}{3}\right)_{\mathcal{R}}$.
 - (a) Justifier que : $B \in \Sigma$.
 - (b) On note Π_B le plan tangent en B à la surface Σ . Établir que le plan Π_B admet comme équation : $2x + \sqrt{2}y \sqrt{2}z = 2$. On rappellera le lien entre le vecteur de coordonnées $\overrightarrow{\operatorname{grad}} \varphi\left(\frac{1}{3}, \frac{\sqrt{2}}{3}, \frac{-\sqrt{2}}{3}\right)$ et ce plan.
 - (c) A-t-on : $A \in \Pi_B$? En déduire que : $B \in \Gamma$.
- 8. Soit $T \in \Sigma$, un point de coordonnées (u, v, w) dans le repère \mathcal{R} . Établir que le plan tangent noté Π_T en T à la surface Σ admet comme équation :

$$6ux + (2v - w)y + (2w - v)z = 2.$$

9. Conclure que la courbe Γ est la conique \mathcal{E} .

Fin de l'énoncé