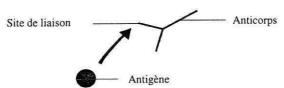
Extrait de la documentation BAYER

Principes de la Chimiluminescence

La chimiluminescence est une réaction chimique qui émet de l'énergie sous forme de lumière. Quand elle est utilisée dans la technologie des immunodosages, la lumière émise traduit la quantité d'analyte (substance qui subit une analyse ou est mesurée) présente dans l'échantillon. Les réactions de chimiluminescence directe mesurent l'énergie lumineuse sans utiliser d'étapes supplémentaires, ni de molécules d'amplification. Les dosages ACS:180 SE utilisent l'ester d'acridinium (EA) comme marqueur chimiluminescent car l'ester d'acridinium ne requiert pas d'ajout de catalyseur, ni de substrat.


Chimiluminescence Directe

La chimiluminescence directe utilisant l'ester d'acridinium est facile à automatiser et fournit de nombreux avantages tels que la grande durée de vie des réactifs, la rapidité de la réaction et la sensibilité des dosages. Les dosages ACS180-SE utilisent la forme diméthyle de l'ester d'acridinium car sa bonne stabilité permet une grande durée de vie des réactifs.

Dans les dosages ACS180-SE, l'ester d'acridinium est oxydé par du peroxyde d'hydrogène et l'émission de lumière est optimisée par le passage d'un milieu acide à un milieu basique. L'oxydation de l'ester d'acridinium est rapide puisque le flash luminescent se produit en moins d'une seconde. Grâce à la rapidité de la réaction et au très faible bruit de fond, la chimiluminescence directe à l'ester d'acridinium est plus rapide que les autres méthodes (RIA ou EIA).

Principes de Liaison des Anticorps

Les anticorps sont des protéines qui sont produites par le système immunitaire en réponse à un antigène. Leur utilisation est idéale dans les immunodosages car ils peuvent être produits pour se lier à un antigène spécifique. Dans les immunodosages, l'antigène constitue l'analyte qui doit être mesuré.

L'ester d'acridinium peut être lié de façon covalente à un anticorps sans altérer la capacité de l'anticorps de se lier à un antigène. Pour mesurer un antigène, beaucoup de dosages ACS180-SE utilisent des anticorps liés de facon covalente à l'ester d'acridinium.

Particules Paramagnétiques et Séparation Magnétique

Les particules paramagnétiques (PPM) sont des cristaux d'oxyde de fer attirés par un champ magnétique. Dans les dosages ACS:180 SE, les particules paramagnétiques sont tapissées (ou coatées) par des anticorps ou des antigènes et forment la *Phase Solide*.

Durant l'incubation, les particules paramagnétiques coatées présentes dans la cuvette se lient à l'antigène ou l'anticorps cible. Lorsque la cuvette est exposée à un champ magnétique, les particules paramagnétiques coatées et l'antigène ou l'anticorps liés aux particules paramagnétiques sont attirés vers les aimants. Tandis que les aimants retiennent les particules paramagnétiques, l'échantillon et le réactif non liés aux particules paramagnétiques sont éliminés par le lavage.

L'émission de lumière est mesurée en unités relatives de lumière (RLUs). Dès que la lumière émise par l'oxydation de l'ester d'acridinium est quantifiée, le système calcule la concentration en analyte.

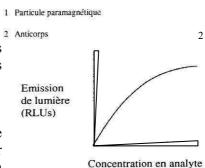


Figure 2-4. Cuvette Feeder Assembly 1458x39B (1 of 2)

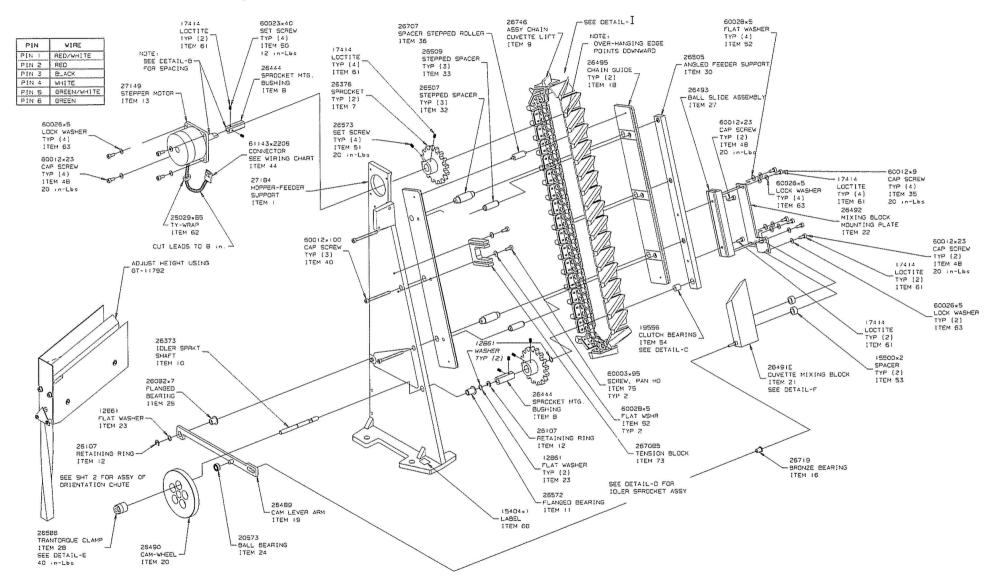
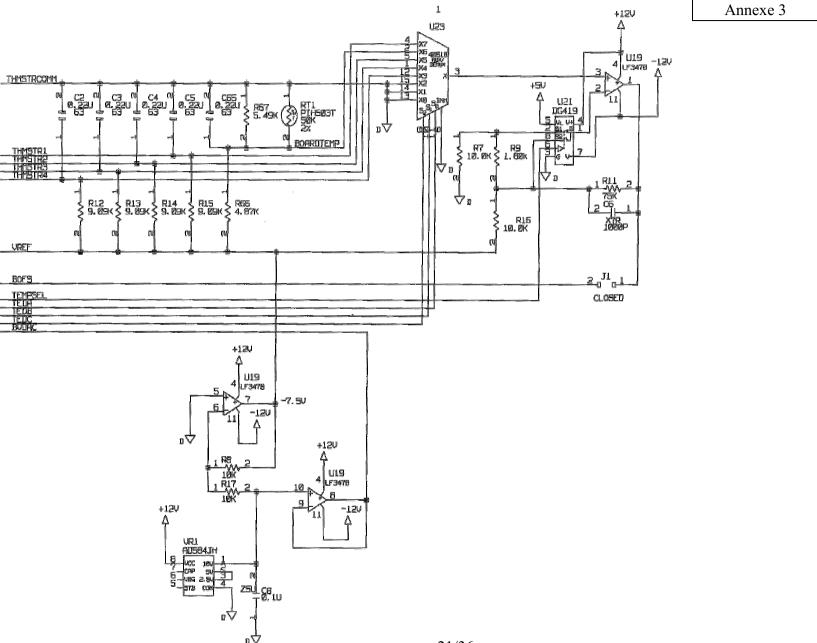
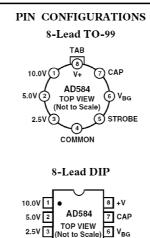



Figure 6-2. 3032d Machine Controller (14 of 15)

- 21/36 -

Annexe 4 Α В $\overline{\mathbf{c}}$ $\overline{\mathsf{D}}$ +12V TEDA U23 +12V C6 +12V 1øk TEDC 1nF U1 _U19_2 7 × VREF1 VREF2 75K **_**U19_1 LF347B_ 2[□] 1 ₩ VB0FS AD584 -12V LF347B_ 1∓ VDD = 6 V VEE = -6 V VSS = 0 V CD4051 -12V LES CINQ CTN APPARAISSENT SUR LE SCHEMA MAIS SONT EN FAIT REPARTIES EN DIFFERENTS LIEUX DE LA MACHINE. Selection des temperatures Title - ACS 180 SE -Rev 2 4 Size Number Schema simplifie A4 Date Drawn by V . T Filename Sheet of Α В



Pin Programmable Precision Voltage Reference

AD584*

FFATURES

Four Programmable Output Voltages:
10.000 V, 7.500 V, 5.000 V, 2.500 V
Laser-Trimmed to High Accuracies
No External Components Required
Trimmed Temperature Coefficient:
5 ppm/°C Max, 0°C to 70°C (AD584L)
15 ppm/°C Max, -55°C to +125°C (AD584T)
Zero Output Strobe Terminal Provided
Two Terminal Negative Reference
Capability (5 V and above)
Output Sources or Sinks Current
Low Quiescent Current: 1.0 mA Max
10 mA Current Output Capability
MIL-STD-883 Compliant Versions Available

Description générale

L'AD584 est un composant 8 broches. Il s'agit d'un composant permettant d'obtenir des tensions de référence précises. Ces tensions, largement utilisées, sont 10 V; 7,5 V; 5 V et 2,5 V. Il est possible d'obtenir d'autres tensions de sortie, supérieures, inférieures ou intermédiaires à ces quatre valeurs 'standards' en ajoutant des résistances externes.

La tension d'entrée peut varier entre 4,5 V et 30 V.

L'AD584 est recommandé comme référence de tension pour les convertisseurs numérique analogique 8, 10 et 12 bits qui nécessitent une référence de tension externe précise.

L'AD584 dispose d'une entrée "strobe" qui permet de placer le composant en mode "off". Si cette entrée (STB) est laissée en l'air, le composant fonctionne normalement en tant que référence de tension.

Mode d'utilisation

Si on applique une tension entre les broches 8 et 4 (masse) avec toutes les autres broches en l'air, l'AD584 génère une tension nominale de 10 V entre les broches 1 et 4. La tension stabilisée présente sur la broche 1 peut être réduite à 7,5 V; 5 V ou 2,5 V en reliant les broches "de programmation" de la manière indiquée dans le tableau ci-dessous :

Output Voltage	Pin Programming
7.5 V	Join the 2.5 V and 5.0 V pins (2) and (3).
5.0 V	Connect the 5.0 V pin (2) to the output pin (1).
2.5 V	Connect the 2.5 V pin (3) to the output pin (1).

N.B : D'autres utilisations de l'AD584 sont possibles mais ne seront pas détaillées dans cette notice simplifiée.

Revised April 2002

CD4051BC • CD4052BC • CD4053BC

Single 8-Channel Analog Multiplexer/Demultiplexer • Dual 4-Channel Analog Multiplexer/Demultiplexer • Triple 2-Channel Analog Multiplexer/Demultiplexer

Description générale de fonctionnement

Les CD 4051BC, CD 4052BC et CD 4053BC sont des interrupteurs analogiques contrôlés par des entrées logiques. Ces interrupteurs possèdent une résistance très faible à l'état passant et une résistance très élevée à l'état ouvert.

Le contrôle des signaux analogiques (jusqu'à 15 V crête-crête) peut être réalisé par des signaux logiques dont l'amplitude peut varier de 3 à 15 V. Par exemple, si VDD = 5 V, VSS = 0 V et VEE = - 5 V, des signaux de - 5 V à + 5 V peuvent être contrôlés par des signaux numériques 0; 5 V. Quand un niveau logique haut est présent sur l'entrée d'inhibition (Inhibit) toutes les voies sont à l'état ouvert.

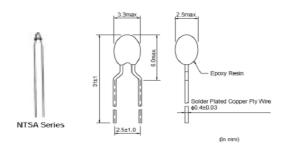
Le CD 4051BC est un multiplexeur, démultiplexeur 8 voies qui possède 3 entrées de sélection A, B et C et une entrée d'inhibition. Les 3 entrées de sélection permettent de choisir une voie parmi 8. Cette voie relie alors l'entrée à la sortie.

La table de vérité ci-dessous illustre le fonctionnement de ce composant.

Table de vérité

	Entr	ées		Voie sélectionnée				
INHIBIT	С	В	Α	CD4051B	CD4052B	CD4053B		
0	0	0	0	0	0X, 0Y	cx, bx, ax		
0	0	0	1	1	1X, 1Y	cx, bx, ay		
0	0	1	0	2	2X, 2Y	cx, by, ax		
0	0	1	1	3	3X, 3Y	cx, by, ay		
0	1	0	0	4		cy, bx, ax		
0	1	0	1	5		cy, bx, ay		
0	1	1	0	6		cy, by, ax		
0	1	1	1	7		cy, by, ay		
1	*	*	*	Aucune	Aucune	Aucune		

^{*} Etat indifférent


NTC Thermistors - C.T.N

muRata

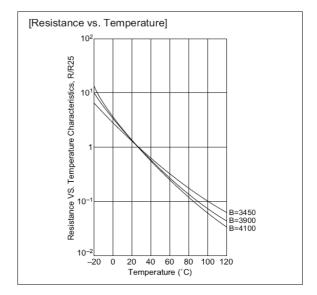
Ce produit est un capteur de type thermistance N.T.C. (Negative Thermal Coefficient).

Caractéristiques principales

- 1. Haute précision $\pm 1\%$
- 2. Réponse rapide (cette rapidité est due à la petite taille du produit).

Part Number	Resistance (25°C) (25-5' (k ohm) (K		Max. Operating Current (25°C) (mA)	Rated Electric Power (25°C) (mW)	Typical Dissipation Constant (25°C) (mW/°C)	Thermal Time Constant (25°C)(s)	Operating Temperature Range (°C)
NTS□0XM202□E1B0	2.0	3500 ±1%	1.05	21	2.1	less than7	-40 to 125
NTS□0XR502□E1B0	5.0	3700 ±1%	0.68	21	2.1	less than7	-40 to 125
NTS□0XH103□E1B0	10	3380 ±1%	0.38	15	1.5	less than7	-40 to 125
NTS□0XV103□E1B0	10	3900 ±1%	0.46	21	2.1	less than7	-40 to 125
NTS□0WB203□E1B0	20	4050 ±1%	0.31	21	2.1	less than7	-40 to 125
NTS□0WC303□E1B0	30	4100 ±1%	0.26	21	2.1	less than7	-40 to 125
NTS□0WD503□E1B0	50	4150 ±1%	0.20	21	2.1	less than7	-40 to 125
NTS□0WF104□E1B0	100	4250 ±1%	0.14	21	2.1	less than7	-40 to 125

Caractéristique de base :


Résistance: $R = R_0 \cdot e^{B \cdot \left(\frac{1}{T} - \frac{1}{T_0}\right)}$

R : Résistance à la température ambiante T (K)

 R_{θ} : Résistance à la température ambiante T_{θ} (K)

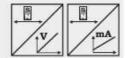
B : B-constante de la C.T.N.

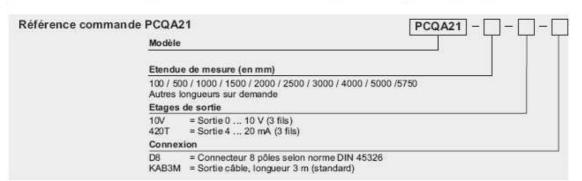
On rappelle que $0 K \approx -273 \, ^{\circ}C$.

Annexes

Toman	NTS□0XM202F type		NTS□0XR502F type			NTS□0XH103F type			NTS□0XV103F type			
Temp.	R	esistance (k	Ω)	Re	esistance (k	Ω)	Re	esistance (k	Ω)	Re	esistance (k	Ω)
(°C)	Low	Center	High	Low	Center	High	Low	Center	High	Low	Center	High
-40	42.859	44.657	46.526	118.390	123.484	128.781	188.021	195.652	203.573	332.325	347.808	363.977
-35	32.249	33.505	34.807	88.747	92.295	95.975	142.788	148.171	153.741	238.323	248.591	259.275
-30	24.504	25.388	26.302	67.127	69.614	72.185	109.522	113.347	117.294	173.098	179.973	187.102
-25	18.777	19.402	20.046	51.112	52.860	54.662	84.823	87.559	90.374	127.191	131.832	136.629
-20	14.516	14.961	15.417	39.246	40.480	41.748	66.270	68.237	70.255	94.524	97.679	100.930
-15	11.327	11.644	11.969	30.400	31.275	32.172	52.229	53.650	55.104	70.962	73.119	75.334
-10	8.906	9.133	9.365	23.718	24.339	24.975	41.477	42.506	43.557	53.820	55.301	56.817
-5	7.035	7.198	7.363	18.710	19.154	19.607	33.147	33.892	34.651	41.237	42.257	43.299
0	5.600	5.716	5.834	14.831	15.148	15.469	26.678	27.219	27.767	31.878	32.582	33.298
5	4.489	4.571	4.655	11.741	11.964	12.189	21.630	22.021	22.417	24.839	25.324	25.815
10	3.623	3.682	3.741	9.365	9.520	9.677	17.643	17.926	18.210	19.514	19.847	20.183
15	2.946	2.987	3.029	7.526	7.624	7.742	14.472	14.674	14.877	15.453	15.679	15.907
20	2.409	2.437	2.466	6.086	6.160	6.234	11.938	12.081	12.224	12.326	12.478	12.630
25	1.980	2.000	2.020	4.950	5.000	5.050	9.900	10.000	10.100	9.900	10.000	10.100
30	1.632	1.651	1.671	4.034	4.082	4.131	8.217	8.315	8.413	7.971	8.068	8.166
35	1.352	1.371	1.389	3.308	3.354	3.401	6.854	6.948	7.043	6.459	6.552	6.645
40	1.126	1.143	1.161	2.729	2.773	2.816	5.745	5.834	5.923	5.267	5.353	5.440
45	0.942	0.958	0.974	2.259	2.299	2.340	4.834	4.917	5.001	4.320	4.399	4.479
50	0.792	0.807	0.822	1.877	1.914	1.952	4.084	4.161	4.239	3.563	3.635	3.708
55	0.670	0.683	0.697	1.573	1.607	1.641	3.464	3.535	3.607	2.954	3.020	3.086
60	0.569	0.582	0.594	1.325	1.356	1.387	2.949	3.014	3.081	2.462	2.521	2.582
65	0.485	0.497	0.508	1.121	1.149	1.177	2.526	2.586	2.647	2.062	2.115	2.170
70	0.415	0.426	0.436	0.953	0.978	1.003	2.173	2.228	2.283	1.736	1.783	1.832
75	0.358	0.367	0.377	0.811	0.834	0.857	1.875	1.925	1.976	1.467	1.510	1.553
80	0.309	0.318	0.326	0.693	0.714	0.734	1.623	1.669	1.715	1.245	1.284	1.323
85	0.268	0.276	0.284	0.594	0.612	0.631	1.411	1.452	1.495	1.061	1.096	1.131
90	0.233	0.240	0.247	0.510	0.527	0.544	1.230	1.268	1.307	0.908	0.939	0.971
95	0.203	0.210	0.216	0.441	0.456	0.471	1.075	1.110	1.145	0.781	0.808	0.837
100	0.178	0.183	0.189	0.383	0.396	0.410	0.942	0.974	1.006	0.674	0.698	0.724
105	0.156	0.161	0.166	0.333	0.345	0.358	0.829	0.858	0.888	0.583	0.605	0.628
110	0.137	0.142	0.147	0.291	0.302	0.313	0.732	0.758	0.785	0.507	0.527	0.547
115	0.121	0.125	0.130	0.255	0.264	0.275	0.647	0.671	0.696	0.442	0.460	0.479
120	0.107	0.111	0.115	0.223	0.232	0.241	0.574	0.596	0.619	0.386	0.403	0.420
125	0.096	0.099	0.103	0.197	0.205	0.213	0.511	0.531	0.552	0.339	0.354	0.369

Temp.	NTS[□0WB203F	type	NTS	□0WC303F	type	NTS[□0WD503F	type	NTS□0WF104F type		
(°C)	Re	esistance (k	Ω)	Re	esistance (k	Ω)	Re	esistance (k	Ω)	Re	esistance (k	Ω)
(C)	Low	Center	High	Low	Center	High	Low	Center	High	Low	Center	High
-40	700.008	733.007	767.485	1097.262	1149.500	1204.104	1859.709	1948.575	2041.484	4059.035	4256.752	4463.654
-35	502.881	524.831	547.685	785.054	819.651	855.688	1328.527	1387.289	1448.506	2876.261	3005.888	3141.042
-30	365.460	380.184	395.462	568.281	591.391	615.380	960.265	999.456	1040.143	2062.776	2148.514	2237.591
-25	267.924	277.845	288.106	415.020	430.529	446.573	702.528	728.895	756.177	1497.800	1555.020	1614.264
-20	198.531	205.260	212.196	306.393	316.870	327.672	519.195	537.039	555.440	1098.895	1137.312	1176.955
-15	149.036	153.642	158.374	229.194	236.337	243.678	387.052	399.167	411.621	813.431	839.314	865.934
-10	112.855	116.016	119.254	172.958	177.842	182.864	291.216	299.469	307.927	607.840	625.338	643.275
-5	85.960	88.125	90.336	131.298	134.630	138.033	220.570	226.186	231.921	457.312	469.127	481.198
0	66.039	67.522	69.032	100.542	102.816	105.131	168.570	172.393	176.285	347.243	355.224	363.353
5	51.154	52.168	53.197	77.635	79.183	80.755	130.250	132.857	135.503	266.643	272.045	277.529
10	39.927	40.617	41.314	60.411	61.460	62.521	101.322	103.089	104.875	206.172	209.803	213.477
15	31.382	31.847	32.315	47.342	48.045	48.754	79.248	80.430	81.621	160.304	162.713	165.141
20	24.843	25.151	25.461	37.369	37.834	38.300	62.423	63.201	63.982	125.545	127.117	128.696
25	19.800	20.000	20.200	29.700	30.000	30.300	49.500	50.000	50.500	99.000	100.000	101.000
30	15.819	16.014	16.210	23.663	23.955	24.240	39.338	39.825	40.315	78.240	79.215	80.193
35	12.718	12.902	13.088	18.972	19.249	19.528	31.458	31.918	32.382	62.232	63.150	64.075
40	10.286	10.457	10.630	15.304	15.560	15.819	25.308	25.733	26.163	49.803	50.649	51.505
45	8.371	8.527	8.686	12.423	12.657	12.894	20.489	20.877	21.270	40.116	40.885	41.664
50	6.851	6.993	7.137	10.142	10.354	10.569	16.683	17.034	17.390	32.503	33.195	33.898
55	5.643	5.771	5.901	8.334	8.525	8.719	13.615	13.929	14.249	26.396	27.014	27.643
60	4.674	4.789	4.906	6.887	7.058	7.232	11.159	11.439	11.725	21.531	22.079	22.639
65	3.889	3.992	4.097	5.717	5.869	6.025	9.236	9.485	9.741	17.740	18.226	18.724
70	3.251	3.343	3.437	4.769	4.905	5.044	7.684	7.906	8.133	14.693	15.124	15.566
75	2.727	2.809	2.893	3.992	4.113	4.237	6.417	6.614	6.816	12.217	2.598	12.990
80	2.298	2.371	2.446	3.356	3.463	3.574	5.383	5.558	5.738	10.205	10.542	10.890
85	1.955	2.020	2.087	2.849	2.945	3.044	4.531	4.686	4.846	8.554	8.852	9.160
90	1.671	1.729	1.789	2.430	2.516	2.605	3.829	3.967	4.109	7.200	7.463	7.736
95	1.424	1.476	1.529	2.067	2.143	2.222	3.250	3.373	3.499	6.088	6.321	6.562
100	1.217	1.264	1.312	1.764	1.832	1.903	2.770	2.878	2.991	5.167	5.374	5.588
105	1.044	1.085	1.128	1.510	1.571	1.633	2.368	2.465	2.565	4.401	4.585	4.775
110	0.898	0.935	0.973	1.297	1.350	1.407	2.032	2.118	2.207	3.762	3.925	4.094
115	0.779	0.812	0.847	1.123	1.171	1.222	1.751	1.828	1.908	3.231	3.376	3.527
120	0.679	0.708	0.739	0.976	1.019	1.065	1.514	1.583	1.655	2.785	2.913	3.048
125	0.590	0.617	0.644	0.846	0.886	0.927	1.312	1.374	1.438	1.438	2.520	2.640


PCQA21 POSICHRON[®] capteur de position Profilé carré avec sortie analogique



POSICHRON® capteur de position en profilé

- · Degré de protection IP67
- Etendue de mesure 0 ... 100 à 0 ... 5750 mm
- · Mesure de position absolue
- · Montage simple par brides de fixation
- · Sans usure et sans maintenance
- · Montable sur trois faces
- Sortie 0 ... 10 V
- Sortie 4 ... 20 mA

Caractéristiques	Etages de sortie	Tension: 0 10 V (3 fils) Courant: 4 20 mA (3 fils)				
techniques	Résolution	Quasi-infinie				
CONTRACTOR AND	Fréquence d'échantillonnage	0,5 2 kHz, dépendant de l'E.M.				
	Linearité	±0,1 mm pour étendue de mesure ≤500 mm ±0,02 % de l'E.M. pour étendue de mesure >500 mm				
	Matériau du boîtier	AlMgSi1				
	Degré de protection	IP67 (avec connecteur et câble)				
	Température de fonctionnement	-40 +85 °C				
	CEM, immunité aux interférences	EN61326: 1998, tableau A1				
	CEM, émissions d'interférences	EN55011 groupe 1 classe A				
	Résistance aux chocs	100 g/6 ms selon EN 60068-2-27				
	Résistance aux vibrations	15 g, 102000 Hz selon EN60068-2-6				
	Connexion	Connecteur 8 päies selon norme DIN 45326 Sortie câble, longueur 3 m (standard)				

Référence commande des éléments de fixation (voir accessoires page 60)
Référence commande de l'aimant de position (voir accessoires page 58)
Référence commande du connecteur (voir accessoires page 63)

PCQA-BFS1
PCMAG...
WS-CONN-D8

Exemple de commande: PCQA21 - 1500 - 10V - D8

POSICHRON®

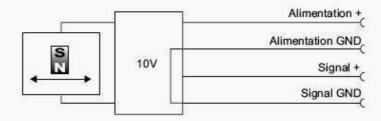
Spécification des étages de sortie 420T et 10V

Sortie analogique 420T

Sortie courant (3 Fils)

Tension d'alimentation +18...+27 V DC, ondulation restante 10 mV... Consommation à vide 80 mA max. 350 Ω max. Résistance de charge Signal de sortie 4 ... 20 mA pour 0 à 100% de la course Stabilité en température ±50 x 10⁻⁶ / °C de l'étendue de mesure Protection électrique Contre les inversions de polarité et les courts-circuits permanents Bruit du signal de sortie 0,5 mVett -40 ... +85 °C Température de fonctionnement Compatibilité électromagnétique Selon la norme EN61326: 1998

Signal de sortie



Sortie analogique 10V Sortie tension

Tension d'alimentation +18 ... +27 V DC, ondulation restante 10 mV, Consommation à vide 80 mA max. Signal de sortie 0 ... +10 V DC Courant de sortie 2 mA max. Résistance de charge >5 kΩ ±50 x 10° / °C de l'étendue de mesure Stabilité en température Protection électrique Contre les inversions de polarité et les courts-circuits permanents Bruit du signal de sortie 0,5 mV_{eff.} -40 ... +85 °C Température de fonctionnement Compatibilité électromagnétique Selon la norme EN61326: 1998

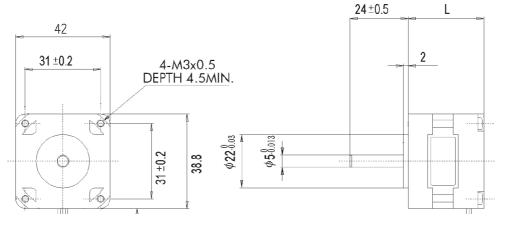
Signal de sortie

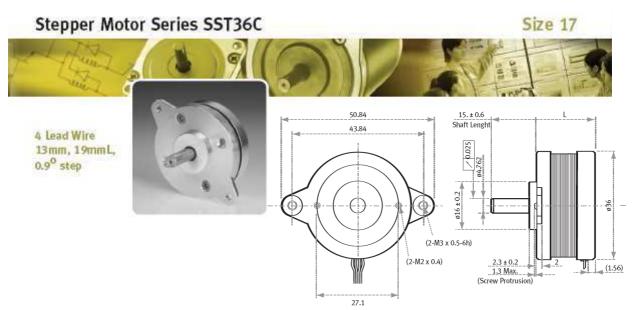
Branchement	Signaux de sortie 420T	10V	Broches du connecteur	Couleur de câble
	Alimentation +	Alimentation +	4	blanc
	Alimentation GND	Alimentation GND	2	brune
	Signal +	Signal +	3	vert
		Signal GND	4	jaune

Connectique

Connecteur femelle

Vue sur les points 3 0 0 0 1 1 de soudure 7 8


WS-CONN-D8


CONN-M12-8P-X

Stepper Motor Series SST42D

Size 17

Specifications										
MODEL	STEP Angle	VOLTAGE	CURRENT	RESISTANCE	INDUCTANCE	HOLDING TORQUE	ROTOR INERTIA	NUMBER OF LEADS	WEIGHT	DIMENSION
SINGLE SHAFT	DEG.		A/Phase	Ω/Phase	mH/Phase	kg-cm	g-cm²	LEAD	kg	
SST36C0030	0.9	5	0.30	16.8	8.5	0.36	7.3	4	0.05	12.35
SST36C1050	0.9	5	0.45	11.5	9	0.86	19	4	0.09	19.7